Sima team, 2024. "Scaling instructable agents across many simulated worlds." arXiv preprint arXiv:2404.10179. [link] [blog post]
Coda-Forno, J., Binz, M., Wang, J.X. and Schulz, E., 2024. CogBench: A large language model walks into a psychology lab. Forty-first International Conference on Machine Learning (ICML).
Binz, M., Dasgupta, I., Jagadish, A., Botvinick, M., Wang, J.X. and Schulz, E., 2024. Meta-learned models of cognition. Behavioral and Brain Sciences, 47 (arXiv preprint arXiv:2304.06729). [link] [response to commentary]
Lampinen, A.K., Chan, S.C., Dasgupta, I., Nam, A.J. and Wang, J.X., 2023. Passive learning of active causal strategies in agents and language models. Advances in Neural Information Processing Systems, 36, (arXiv preprint arXiv:2305.16183).
Coda-Forno, J., Binz, M., Akata, Z., Botvinick, M., Wang, J.X. and Schulz, E., 2023. Meta-in-context learning in large language models. Advances in Neural Information Processing Systems, 36 (arXiv preprint arXiv:2305.12907).
Duéñez-Guzmán, E.A., Sadedin, S., Wang, J.X., McKee, K.R., Leibo, J.Z., 2023. A social path to human-like artificial intelligence. Nature Machine Intelligence. 5, p1181–1188.
Jagadish, A.K., Binz, M., Saanum, T., Wang, J.X., and Schulz, E., 2023. Zero-shot compositional reinforcement learning in humans. PsyArxiv 10.31234/osf.io/ymve5
Ke, N.R., Dunn, S.J., Bornschein, J., Chiappa, S., Rey, M., Lespiau, J.B., Cassirer, A., Wang, J.X., Weber, T., Barrett, D. and Botvinick, M., 2023. DiscoGen: Learning to Discover Gene Regulatory Networks. arXiv preprint arXiv:2304.05823.
Chan, S., Santoro, A., Lampinen, A., Wang, J.X., Singh, A., Richemond, P., McClelland, J. and Hill, F., 2022. Data distributional properties drive emergent in-context learning in transformers. Advances in Neural Information Processing Systems, 35, pp.18878-18891.
Tam, A., Rabinowitz, N., Lampinen, A., Roy, N.A., Chan, S., Strouse, D.J., Wang, J.X., Banino, A. and Hill, F., 2022. Semantic exploration from language abstractions and pretrained representations. Advances in Neural Information Processing Systems, 35, pp.25377-25389.
Grau-Moya, J., Delétang, G., Kunesch, M., Genewein, T., Catt, E., Li, K., Ruoss, A., Cundy, C., Veness, J., Wang, J.X., and Hutter, M., 2022. Beyond Bayes-optimality: Meta-learning what you know you don't know. arXiv preprint arXiv:2209.15618.
Lampinen, A.K., Roy, N., Dasgupta, I., Chan, S.C., Tam, A., Mcclelland, J., Yan, C., Santoro, A., Rabinowitz, N.C., Wang, J.X., and Hill, F., 2022, June. Tell me why! explanations support learning relational and causal structure. In International Conference on Machine Learning (pp. 11868-11890).
Ke, N.R., Chiappa, S., Wang, J.X., Bornschein, J., Goyal, A., Rey, M., Weber, T., Botvinick, M., Mozer, M.C. and Rezende, D.J., 2022, September. Learning to Induce Causal Structure. In International Conference on Learning Representations (ICLR).
Lampinen, A., Dasgupta, I., Chan, S., Mathewson, K., Tessler, M., Creswell, A., McClelland, J., Wang, J. X., & Hill, F. (2022, December). Can language models learn from explanations in context?. In Findings of the Association for Computational Linguistics: EMNLP 2022 (pp. 537-563).
Jagadish, A. K., Saanum, T., Wang, J. X., Binz, M., & Schulz, E. (2022, June). Probing Compositional Inference in Natural and Artificial Agents. In 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022) (pp. 275-279).
Wang JX*, King M*, Porcel N, Kurth-Nelson Z, Zhu T, Deck C, Choy P, Cassin M, Reynolds M, Song F, Buttimore G., Reichert DP, Rabinowitz N, Matthey L, Hassabis D, Lerchner A, Botvinick M. (2021) Alchemy: A benchmark and analysis toolkit for meta-reinforcement learning agents. NeurIPS Conference 2021 Benchmarks and Datasets Track. [link] [pdf]
Wang JX. (2021) Meta-learning in natural and artificial intelligence. Current Opinion in Behavioral Sciences. 38, 90-95. arxiv.org:2011.13464. [link] [pdf]
Flennerhag S, Wang JX, Sprechmann P, Visin F, Galashov A, Kapturowski S, Borsa DL, Heess N, Barreto A, Pascanu R. (2020) Temporal difference uncertainties as a signal for exploration. arXiv:2010.02255. [link] [pdf]
Ke NR*, Wang JX, Mitrovic J, Szummer M, Rezende DJ*. (2020) Amortized learning of neural causal representations. ICLR Workshop on Causal Learning for Decision-Making. [link] [pdf]
Botvinick M, Wang JX, Dabney W, Miller KJ, Kurth-Nelson Z. (2020) Deep reinforcement learning and its neuroscientific implications. Neuron. 107(4). [link] [pdf]
Rezende DJ, Danihelka I, Papamakarios G, Ke NR, Jiang R, Weber T, Gregor K, Merzic H, Viola F, Wang J, Mitrovic J., Besse F, Antonoglou I, Buesing L. (2020) Causally correct partial models for reinforcement learning. arXiv:2002.02836. [link] [pdf]
Schwarb H, Johnson CL, Dulas MR, McGarry MD, Holtrop JL, Watson PD, Wang JX, Voss JL, Sutton BP, Cohen NJ. (2019) Structural and functional MRI evidence for distinct medial temporal and prefrontal roles in context-dependent relational memory. Journal of Cognitive Neuroscience. (12):1857-72. [link]
Ortega PA, Wang JX, Rowland M, Genewein T, Kurth-Nelson Z, Pascanu R, Heess N et al. (2019) Meta-learning of sequential strategies. arXiv:1905.03030. [link] [pdf]
Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, & Hassabis D. (2019) Reinforcement learning, fast and slow. Trends in Cognitive Sciences. [link] [pdf] Featured in Cell’s “Best of Trends” from 2019
Dasgupta I, Wang JX, Chiappa S, Mitrovic J, Ortega P, Raposo D, Hughes E, Battaglia P, Botvinick M, Kurth-Nelson Z. (2019) Causal reasoning from meta-reinforcement learning. NeurIPS Workshop on Meta-Learning. arXiv:1901.08162. [link] [pdf]
Wang JX, Hughes E, Fernando CT, Czarnecki WM, Duenez-Guzman EA, Leibo JZ. (2019) Evolving intrinsic motivations for altruistic behavior. Proceedings of the 18th International Conference on Autonomous Agents and Multi-agent Systems (AAMAS). arXiv:1811.05931. [link] [pdf]
Fernando CT, Sygnowski J, Osindero S, Wang JX, Schaul T, Teplyashin D, Sprechmann P, Pritzel A, Rusu A. (2018) Meta-learning by the Baldwin effect. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion Pages. 1313-1320. arXiv:1806.07917. [link] [pdf]
Wang JX*, Kurth-Nelson Z*, Kumaran D, Tirumala D, Soyer H, Leibo JZ, Hassabis D, Botvinick M. (2018) Prefrontal cortex as a meta-reinforcement learning system. Nature Neuroscience. 21 (6), 860. [link] [pdf]
Ritter S, Wang JX, Kurth-Nelson Z, Jayakumar SM, Blundell C, Pascanu R, Botvinick M. (2018) Been there, done that: Meta-learning with episodic recall. Proceedings of the International Conference on Machine Learning (ICML). 4351-4360. arXiv:1805.09692. [link] [pdf]
Ritter, S*, Wang JX*, Kurth-Nelson Z, Botvinick MM. (2018) Episodic control as meta-reinforcement learning. CogSci. bioRxiv:360537. [link] [pdf]
Wang JX, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo JZ, Munos R, Blundell C, Kumaran D, Botvinick M. (2016) Learning to reinforcement learn. CogSci. arXiv:1611.05763. [link] [pdf] Winner of the Computational Modeling Prize in Applied Cognition, CogSci 2017
Schwarb H, Watson PD, Campbell K, Shander CL, Monti JM, Cooke GE, Wang JX, Kramer AF, Cohen NJ. (2015) Competition and cooperation among relational memory representations. PLOS ONE. 10 (11), e0143832. [link] [pdf]
Ryals AJ, Wang JX, Polnaszek KL, Voss JL. (2015) Hippocampal contribution to implicit configuration memory expressed via eye movements during scene exploration. Hippocampus. 25 (9), 1028-1041. [link] [pdf]
Wang JX, Voss JL. (2015) Long-lasting enhancements of memory and hippocampal-cortical functional connectivity following multiple-day targeted noninvasive stimulation. Hippocampus. 25 (8), 877-883. [link] [pdf]
Lancichinetti AL, Sirer MI, Wang JX, Acuna D, Kording K, Amaral LAN. (2015) High-reproducibility and high-accuracy method for automated topic classification. Phys. Rev. X. 5 (1), 011007. [link] [pdf] [SI]
Wang JX, Cohen NJ, Voss JL. (2015) Covert rapid action-memory simulation (CRAMS): A hypothesis of hippocampal-prefrontal interactions for adaptive behavior. Neurobiology of Learning and Memory. 117, 22-33. [link] [pdf]
Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu M, Brandstatt KL, Hermiller MS, Voss JL. (2014) Targeted enhancement of hippocampal brain networks and associative memory. Science. 345 (6200), 1054-1057. [link] [pdf] [SI]
Wang JX, Voss JL. (2014) Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron. 82 (5), 1171-1182. [link] [pdf] [SI]
Wang JX, Bartolotti J, Amaral LAN, Booth JR. (2013) Changes in task-related functional connectivity across multiple spatial scales are related to reading performance. PLOS ONE. 8 (3), e59204. [link] [pdf]
Wang JX, Zochowski M. (2012) Interactions of excitatory and inhibitory feedback topologies in facilitating pattern separation and retrieval. Neural Comput. 24 (1), 32-59. [link] [pdf]
Feldt S, Wang JX, Shtrahman E, Dzakpasu R, Olariu E, Zochowski M. (2010) Functional clustering in hippocampal cultures: relating network structure and dynamics. Phys. Biol. 7 (4), 046004. [link] [pdf]
Feldt S, Wang JX, Hetrick VL, Berke JD, Zochowski M. (2010) Memory formation: from network structure to neural dynamics. Phil. Trans. R. Soc. A. 368 (1918), 2251-2267. [link] [pdf]
Wang JX, Poe GR, Zochowski M. (2008) From network heterogeneities to familiarity detection and hippocampal memory management. Phys. Rev. E. 78 (4), 041905. [link] [pdf]
McNaughton BH, Agayan RR, Wang JX, Kopelman R. (2007) Physiochemical microparticle sensors based on nonlinear magnetic oscillations. Sens. Actuators B. 121 (1), 330-340. [link] [pdf]
Dahanayaka DH, Wang JX, Hossain S, Bumm LA. (2006) Optically transparent Au substrates: Flat gold nanoparticle platforms for high-resolution scanning tunneling microscopy. J. Am. Chem. Soc. 128 (18), 6052-6053. [link] [pdf]